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instead of the classical motion where the bubble would just start to expand.
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1. Introduction

A now standard calculation in quantum mechanics is the tunnelling rate for a particle

travelling towards a potential barrier, resulting in an exponentially suppressed transmission

rate if the energy of the particle is lower than the height of the barrier [1]. One of the

remarkable features of quantum mechanics as a wave theory is that by adding another

barrier one may actually increase the transmission rate for certain values of the particle’s

energy [2]. This is in analogy with the Fabry-Perot interferometer, where two partially-

silvered mirrors have a higher transmission rate, for light of specific wavelengths, than a

single partially-silvered mirror [3]. The reason for this increased tunnelling rate, known

as resonant tunnelling, can be traced to the existence of a bound state living between the

two barriers, and the tunnelling rate increases for those particles whose energies match

the energy, or energies, of these bound states. The possibility of increased tunnelling

rates in field theory, and indeed string theory, may be relevant in the string landscape,

as noted by Tye [4]. He suggested these may lead to an efficient way of navigating the

string landscape of vacua, and that we are naturally led to a low energy vacuum after a

series of enhanced tunnelling events from higher energy vacua. This dynamical approach

complements the ongoing investigations into vacua distribution and measure within the

landscape (see eg. [5]).

Resonant tunnelling in quantum mechanics also relies on the existence of an interme-

diate bound state which is used as a springboard for the tunnelling amplitude. In [6], we

identified five properties that the analogous state in standard scalar quantum field theory

must satisfy, and proved that no such state could exist. The implication is that the ho-

mogeneous false vacuum cannot decay via resonant tunnelling in such a theory. Whilst

this no-go theorem cast some serious doubts on the relevance of resonant tunnelling to the
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string landscape, one could also use it as a guidebook, helping us to look in the right places

for resonant tunnelling in quantum field theory.

To illustrate this point in a little more detail, recall the five well motivated conditions

that the intermediate bound state was required to satisfy: (i) it should be a solution to

the classical field equations, (ii) it should have zero energy relative to the homogeneous

false vacuum, (iii) it should asymptote to the false vacuum, (iv) it should be stationary

everywhere on two separate occasions and (v) it should satisfy a certain WKB quantization

condition. In our discussion in [6], we speculated that resonant tunnelling might be possible

in other quantum field theories, or if one could justifiably relax one of these five conditions.

In this paper, we do the latter, noting that the five conditions are only relevant to the

decay of a homogeneous region false vacuum. Of course, this is the standard approach to

studying false vacuum decay [7], even though our Universe is never really in a homogeneous

vacuum state. We therefore consider the possibility that our initial state is inhomogeneous,

but still asymptotically false vacuum. Now we can no longer justify imposing the “zero

energy” condition, (ii), on the bound state in its current form. It should be replaced with

the following statement of energy conservation: the intermediate bound state should have

the same energy as the initial inhomogeneous state. We still define energy relative to the

homogeneous false vacuum, but we now see that the bound state energy may be non-zero.

This means our no-go theorem no longer applies and one might hope to find resonance.

We will explicitly demonstrate resonant tunnelling from an inhomogeneous initial state.

It turns out that the initial state must have certain properties in order to make it susceptible

to resonant decay. In the example we will give, the initial state will correspond to a

contracting bubble, with some minimum radius. At the stationary point, this state decays

via resonant tunnelling to an expanding bubble of different vacuum. The mechanism for

enhancing the tunnelling amplitude is precisely that outlined in [6], with oscillons playing

the role of the bound state. These oscillons are long-lived quasi-periodic localised solutions

of the field theory, whose existence does not rely on conserved charges or the topology of the

vacuum [8]. They are not limited to real scalar field models and have recently been found

in models ranging from 2D Abelian-Higgs models [9] to the Standard Model itself [10],

as well in systems of vibrating grains [11] and in oscillations from the Sun [12]. In an

interesting analogue, we note that oscillating bubbles play the role of an intermediary in

the non-perturbative production of multi-boson states [13]. Oscillons owe their existence to

the non-linear nature of the underlying potential. Numerical solutions show that they tend

to be well approximated by a Gaussian in space, and undergo near-periodic motion in their

amplitude, with an effective radius oscillating with small amplitude about a mean value,

i.e they are of the form φ(t, r) = T (t) exp(− r2

R2 ), where T (t) is the amplitude of oscillation

and R represents the radius of the oscillon. These numerical solutions have been shown

to have a near-constant energy and a near-periodic motion with frequency just below the

mass of the vacuum excitations. This has the effect of meaning that the oscillon loses its

energy extremely slowly, leading to a lifetime that is many orders of magnitude longer than

would normally be associated with it based on a linear approximation to the theory. Exact

oscillon solutions are also known [22] that are strictly periodic and do not radiate energy.

In this paper, we will make use of these exacts solutions in an explicit example. We will

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
5

q

4321
qqqq

E

V(q)

Figure 1: A quantum mechanics potential for resonant transmission.

comment on the role of the quasi-periodic solutions in the conclusions.

The rest of this paper is organised as follows: we begin by giving a brief introduction

to resonant tunnelling in quantum mechanics, outlining the important concepts that will

be needed for the field theory generalisation. We shall then describe how the phenomenon

is expected to appear in field theory, before presenting a particular model which allows for

a direct calculation. In section 5, the results are extended to more general cases, at least in

the thin wall approximation, and we argue that resonant decay is by no means restricted

to the specific example given in section 3. Finally, we discuss our results in section 6, and

speculate as to how they may impact on the string landscape.

2. Resonant tunnelling in QM and its application to QFT

The simplest way to view resonant tunnelling is with the semi-classical approximation in

the path integral formalism [14]. To set the scene, we consider the motion of a quantum

particle as it approaches a set of barriers given by figure 1, such that the energy of the

particle, E, is lower than the height of either barrier. In the semi-classical approximation

the paths which dominate the path integral are those which obey the classical equation

of motion in regions where V < E, and those which obey a Wick-rotated version of the

equation if E < V . In [15] the under-barrier regions (E < V ) were termed most probable

escape paths (MPEPs), and for the full trajectory to make sense the classical paths and

MPEPs must be joined at turning points, i.e. the particle must be stationary there so that

we avoid imaginary momentum in the classical regions.

Now that we know how to solve for the motion along a path we can construct a set of

paths which dominate the path integral, one such set is given in figure 2 where we show

the five different regions that are relevant for the particle’s motion: regions I, III, V are

the classically allowed regions of the potential in figure 1, in those the particle obeys the

classical equations of motion; regions II and IV are classically forbidden, and in those places

the particle follows a MPEP.

Although there are other paths which contribute to the path integral, the ones in fig-

ure 2 are enough to demonstrate the phenomenon of resonant tunnelling. If the phase of

these paths interfere constructively upon leaving the system of barriers then the transmis-

sion amplitude becomes enhanced, and this can be understood to be the condition that

2|q2 − q3| corresponds to an integer number of de Broglie wavelengths. Within the WKB
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Figure 2: Some paths which contribute significantly to the path integral for the potential in

figure 1.

approximation this requires

W =

∫ q3

q2

pdq =

(

n+
1

2

)

π, n ∈ Z, (2.1)

where p is the momentum. This condition is equivalent to saying that there exists a

bound state in region III, and corresponds to paths which oscillate back and forth in this

region [14].

Having understood the mechanism in quantum mechanics we need to apply this to

field theory. This is achieved by extending the N-dimensional quantum mechanics calcula-

tion [15] to field theory [6, 7, 16, 17]. For field theory in d+1 dimensions, the wavefunction,

ψ[φ], is a functional acting on some appropriately chosen “configuration space”, such as the

space of real valued functions on some domain V ⊂ R
d, satisfying some boundary condition

on ∂V. It satisfies the generalised Schrodinger equation, which takes the form
[

−~
2

2

∫

V

ddx
δ2

δφ(x)2
+ U [φ]

]

ψ[φ] = Eψ[φ] (2.2)

where the generalised potential U [φ] =
∫

V
ddx

[

1
2
(~∇φ)2 + V (φ)

]

is also a functional acting

on configuration space, and is given in terms of the field theory potential, V (φ). We

now perform a WKB expansion of the wavefunction, ψ[φ] = exp(−σ[φ]/~), σ[φ] = σ0[φ] +

~σ1[φ]+O(~2), and eliminate any amibiguity with the direction of the functional derivative,

δ/δφ(x), by restricting attention to a single path, Φ(λ, x), in configuration space. We choose

the path that dominates the path integral, along which the wavefunction is peaked. In the

classically allowed regions (E > U), this corresponds to a classical path, Φcl(t, x), satisfying

the classical equations of motion,

d2Φcl

dt2
− ~∇2Φcl + V ′(Φcl) = 0, (2.3)
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whereas in the classical forbidden regions (E < U) it corresponds to a MPEP, Φmp(tE , x),

satisfying the Euclidean equations of motion,

d2Φmp

dτ2
+ ~∇2Φmp − V ′(Φmp) = 0. (2.4)

Note that the classical path is parametrised by real time, t, whereas the MPEP is

parametrised by imaginary time, τ . Classical paths and MPEPs can be sewn on to one

another at classical turning points, such as to form the complete tunnelling trajectory, or

the “tunnelling highway”. For further details, see, for example, section 5 of [6].

Having reduced the system to quantum mechanics along the tunnelling highway, we see

that the classical path in the central part (region III of figure 2) of the highway must play a

key role in establishing whether or not we have field theory resonant tunnelling. This central

path needs to represent the field theory equivalent of a bound state and, as explained in [6],

we believe this to be an oscillon — a localized field theory configuration which exhibits

(quasi-) periodic motion [8]. For resonant decay of the homogeneous vacuum, it is natural

to require that the central path satisfies the five conditions discussed in the introduction,

and it turns out that no such path exists [6]. For resonant decay of an inhomogeneous state,

however, we must replace the zero energy condition with one of energy conservation. This

circumvents our no-go theorem, and we are compelled to seek a bound state, or oscillon,

Φosc(t, x), satisfying the five new conditions

1. it is a solution to the classical field equations (2.3)

2. it has the same energy as the initial (inhomogeneous) state

3. it should asymptotote to the false vacuum

4. it should be stationary everywhere on two separate occasions, t1 and t2

5. it should satisfy the following WKB quantisation condition

W =

∫ t2

t1

dt 2(E − U [Φosc]) = (n+ 1/2)π, n ∈ Z (2.5)

Note that equation (2.5) is the field theory analogue of equation (2.1), and that we have

set ~ = 1.

In the next section we will find a suitable model that admits a solution satisfying all

five conditions. This will demonstrate the field theory version of resonant tunnelling, at

least within the confines of the WKB approximation, as we will see explicitly from the

resonant peaks in the tunnelling rate at certain energies (see figure 8). For the moment,

however, let us try to identify some of the important generic features that we expect such

a model to have. To begin with, consider a scalar theory with potential given by figure 3,

describing a theory with two local vacua (A and B) and one global vacuum (C); note that

the vacua A and C can be degenerate without affecting the argument.

In [6], we considered tunnelling from a homogeneous region of one or other of the false

vacua, A or B, to the true vacuum, C. We now relax this assumption and consider the
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Figure 3: A potential with two false vacua, φ = φA, φB , and one true vacuum, φ = φC .

possibility that the initial state is a mixture of both false vacua. Physically we expect the

field to asymptote towards the higher false vacuum, B, so that the initial state may be

thought of as excited above the corresponding homogeneous solution. Now suppose that

there exists an oscillon solution1 whose peak amplitude over an oscillation varies between φ1

and φ2. As vacuum A has lower potential than B, then a bubble of A vacuum surrounded

by B vacuum will expand, if it is of sufficient size. Similarly, a bubble of C vacuum will

also expand if sufficiently large. This gives us all the ingredients we need to construct the

field theory versions of the paths in figure 2, so here we present a comparison between the

particle and field theory cases.

• Region I: In the mechanics case we set up the initial conditions of a particle moving

toward the barriers. In field theory we construct a bubble of A vacuum and force it

to contract.

• Region II: When the particle reaches the turning point we switch to Euclidean time

and construct the MPEP from q1 to q2. When the contracting bubble reaches its

minimum size we switch to Euclidean time and evolve the profile from this stationary

state to the stationary oscillon state with amplitude φ1.

• Region III: At turning point q2 we return to normal time and allow the particle to

oscillate back and forth between q2 and q3. The particle can oscillate any number of

times, with each possibility giving a contribution to the path integral as in figure 2.

For the field theory, we go back to a Lorentzian signature and allow the oscillon to

evolve. Again, it may perform any number of oscillations between φ1 and φ2, with

each case contributing to the path integral.

• Region IV: After the particle has oscillated in region III we revert to Euclidean

time and evolve it between q3 and q4. For the field theory we resume a Euclidean

1Oscillon profiles are typically rather close to a Gaussian shape.
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signature and evolve from the oscillon profile with amplitude φ2 to a bubble of C

vacuum surrounded by B vacuum.

• Region V: The final part of the motion sees the equations return to normal time,

and the particle rolls from q4 to +∞. While for the field, we again switch back to

Lorentzian signature and watch the bubble of C vacuum expand and consume the

surrounding B vacuum.

There are a number of difficulties in achieving this within an actual model, not least of

which is the rather special initial state of a contracting spherical bubble which would prefer

to expand. There is then the task of finding a field theory with periodic oscillon solutions.

Although oscillons have been found to be long-lived compared to natural timescales [8] they

are typically not strictly periodic. One can construct periodic solutions using a Fourier

expansion [18, 19] but these tend to contain incoming radiation from infinity in order

to counter-balance the radiation being emitted. Once we have a model with a periodic

oscillon we need to make sure that the Euclidean evolutions (regions II and IV) join the

peak-amplitude-profiles onto the (momentarily) static bubbles of vacuum A and C - a far

from trivial requirement.

After these conditions have been met we can then ask what will make tunnelling

from the A bubble to the C bubble resonate. The key condition is given by the WKB

quantization condition (2.5), which one can rewrite like so,

W =

∫ t2

t1

ddxdt φ̇2 =

(

n+
1

2

)

π, n ∈ Z, (2.6)

where t1 and t2 are the times for the half-oscillation of the oscillon. To answer the question

what is the probablity of tunnelling from bubble A to bubble C? we need to introduce the

Euclidean actions for regions II and IV.

σII =

∫

II

ddxdτ (φτ )2, (2.7)

σIV =

∫

IV

ddxdτ (φτ )
2, (2.8)

where φτ = dφ
dτ , and τ is the Euclidean time parameter in the equations of motion for the

MPEP. The transition probability is then given by [2, 4, 6, 17]

TI→V = 4
{

[ΘIIΘIV + 1/(ΘIIΘIV)]2 cos2W + [ΘII/ΘIV + ΘIV/ΘII]
2 sin2W

}−1

, (2.9)

where we define ΘII = exp(−σII), ΘIV = exp(−σIV). From this expression we see that

TI→V has peaks when (2.6) is satisfied.

3. Finding a model

We need to look for a model which contains (i) strictly periodic oscillons and (ii) eternally

expanding bubbles of new vacua. The former are required to play the role of region III,
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described in the previous section, whereas the latter play the role of region V. In particular,

we need the notion of an eternally expanding bubble so that the surrounding false vacuum

is ultimately consumed in the final state. In one spatial dimension there exists breather

solutions of the sine-Gordon model which are the archetype of oscillons (see section 5.2 of

[20]), but this model does not allow for eternally expanding bubbles of new vacua. Going to

higher dimensions one finds that strictly periodic solutions are rather harder to find [18, 21],

with solutions being long lived but typically only quasi-periodic owing to them radiating.

However, there is a model which does have strictly periodic solutions in general spatial

dimensions. This theory has already proved a useful testing ground for a number of non-

perturbative phenomena such as the study non-linear waves, zero temperature tunnelling,

finite temperature tunnelling, [22] and is given by the following Lagrangian,

L̂ = −1

2
∂̂µφ̂∂̂

µφ̂− 1

2
m2φ̂2

[

1 − ln
(

φ̂2/c2
)]

. (3.1)

This can be used to describe a system similar to figure 3 where the vacua A and C are

very deep. We shall work with the dimensionless variables φ = φ̂/c, xµ = mx̂µ, such that

the equation of motion in d spatial dimensions, for a radial profile is given by

φ̈− φ′′ − d− 1

r
φ′ = φ ln φ2, (3.2)

where φ̇ ≡ dφ
dt and φ′ ≡ dφ

dr . The remarkable property of this equation is that, despite being

non-linear, it is separable with the normalizable solution given by

φ(t, r) = T (t) exp(−r2/2) (3.3)

where T is the amplitude of the field. It satisfies the following o.d.e. in the classically

allowed region

T̈ = − d

dT

[

1

2
(1 + d)T 2 − 1

2
T 2 lnT 2

]

= − d

dT
VL(T ), (3.4)

whereas along the MPEPs it satisfies

d2T

dτ2
= − d

dT

[

−1

2
(1 + d)T 2 +

1

2
T 2 lnT 2

]

= − d

dT
VE(T ). (3.5)

The L and E subscripts refer to Lorentzian and Euclidean respectively. While these equa-

tions for T have not proved tractable analytically, they are simple to solve numerically

and constitute a significant simplification of the field theory. We can think of the absolute

amplitude, |T |, as representing the “radius of the bubble”, whereas the sign of T tells us

whether we are probing vacuum A (T < 0) or vacuum C (T > 0). As the system has now

been separated we can consider it in terms of the mechanics of a particle with position T ,

moving in a potential VL for the classically allowed region, and VE along a MPEP. The full

evolution for both the classical solution and the tunnelling solution can be understood by

considering figure 4. The particle starts on the Lorentzian potential, VL, at large negative

T and evolves up to the point T1. Classically, it will turn around at this point and start

– 8 –
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Figure 4: The potentials determining the evolution of T . The Lorentzian potential, VL applies

in the classically allowed regions, whereas the Euclidean potential, VE , applies in the classically

forbidden regions.

Figure 5: The classical evolution of an initially contracting bubble. The evolution parameter is, of

course, real time, t. The lefthand column shows T (t) whereas the righthand column shows φ(t, r).

Classically, the bubble shrinks to its minimum size, |T1| before expanding out again.

to roll back down VL. This gives rise to the classical trajectory shown in figure 5. The

absolute value, |T1|, corresponds to the minimum radius of the bubble in the initial state.

We can determine the value of T1, in terms of the energy (see equation (4.4)) by setting

Ṫ = 0, then solving

E =
1

2
md+2c2Γ

(

d

2

)

Ωd−1VL(T ) (3.6)

For 0 ≤ E < Emax where Emax = 1
4
md+2c2Γ

(

d
2

)

Ωd−1e
d, it is easy to see from figure 4 that

this equation has four real roots, T1 < T2 < T3 < T4, corresponding to the four classical

turning points, and satisfying T1 = −T4 and T2 = −T3.

In contrast to the classical turn-around shown in figure 5, the tunnelling trajectories

behave rather differently. At T1, the particle tunnels along a MPEP towards the next

turning point at T2, under the influence of the Euclidean potential, VE. At T2, the particle

returns to the classically allowed region and the influence of the Lorentzian potential. At

this stage it oscillates some number of times between T2 and T3, before tunnelling again

along another MPEP between T3 and T4. Finally, classical evolution takes over at T4 and

T continues to roll down VL.

These five different regions of evolution are the precise analogue of the regions used

in quantum mechanics to calculate resonant tunnelling (see figure 2). Each of the particle

– 9 –
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VIII IV

T

evolution parameter

I II

Path 2:

VIII IV

T

evolution parameter

I II

Path 3:

VIII IV

T

evolution parameter

I II

Path 4:

VIII IV

T

evolution parameter

I II

Figure 6: Some configurations, or “paths”, which contribute to the path integral for field theory

resonant tunnelling. The lefthand column shows the evolution of T (λ) along a particular path,

whereas the righthand column shows the evolution of the entire field, φ = T (λ)e−r2/2. The evolution

parameter, λ, is given by real time, t in the classically allowed regions, I, III and V, and by Euclidean

time, τ in the classical forbidden regions, II and IV. The “paths” are labelled 1 to 4 in reference to

their quantum mechanical counterparts (see figure 2).

paths in figure 2 get translated into the field theory evolutions of figure 6. For example, path

1 of figure 6 shows a solution of the field theory which starts with a contracting Gaussian

bubble, evolving in Lorentzian time (region I), which reaches a minimum size whereupon

we switch to Euclidean time and evolve the field in region II to the next turning point.

From there we return to Lorentzian time (region III) and perform half an oscillation of

the oscillon. Note that the amplitude of the oscillon passes through zero in this regime,
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and corresponds to the Gaussian bubble of negative amplitude (vacuum A), shrinking to

nothing, before being replaced by an expanding Gaussian bubble of positive amplitude

(vacuum C). The transition from A to C is made possible as the oscillon passes through

zero amplitude with non-zero kinetic energy. The oscillon continues to expand until the

bubble reaches its maximum size, at which point we match to region IV for the next stage

of Euclidean evolution. This will ultimately join on to region V for the Lorentian evolution

of an expanding bubble. So evolution 1 of figure 6 is the field theory version of path 1

in figure 2. Similarly, evolutions 2, 3, 4 of figure 6 are the field theory equivalents of

paths 2, 3, 4 in figure 2, each with a different number of oscillations in region III. These

compare to the classical evolution for the same initial conditions which is presented in

figure 5. For the classical evolution we start with a contracting bubble with Gaussian

profile and negative amplitude which evolves to an expanding bubble with Gaussian profile

and negative amplitude. In contrast, the tunnelling trajectories 1 to 5 each take us from a

negative amplitude to a positive amplitude Gaussian bubble.

4. The transmission rate

To calculate the transmission rate for the double barrier system in quantum mechanics,

using the WKB approximation, we need the following integrals evaluated between the

stationary turning points separating classically allowed and forbidden regions

σII =

∫ τ2

τ1

ddxdτ

(

d

dτ
φ

)2

, (4.1)

W =

∫ t3

t2

ddxdt φ̇2, (4.2)

σIV =

∫ τ4

τ3

ddxdτ

(

d

dτ
φ

)2

. (4.3)

In regions II and IV, the MPEPs are parametrised using Euclidean time, τ , whereas in

region III the classical path is parametrised using real time t. These integrals may be

thought of as functions of the energy, as we will explain shortly. Energy remains constant

throughout the motion, and is defined relative to the homogeneous vacuum, φ ≡ 0. In the

initial, classically allowed, region, it is given by

E = md+2c2
∫

ddx
1

2
φ̇2 +

1

2
(~∇φ)2 +

1

2
φ2(1 − lnφ2)

=
1

2
md+2c2Γ

(

d

2

)

Ωd−1

[

1

2
Ṫ 2 + VL(T )

]

(4.4)

where Ωd−1 is the volume of the unit (d − 1)-sphere. The energy is strictly positive for

excited initial states, a property which distinguishes the decay of inhomogeneous states

discussed here from the homogeneous false vacuum decay discussed in [6].

To see how σII, W and σIV depend on E, recall that the classical turning point occurs

when E = U [φtp], where [6]

U [φ] = md+2c2
∫

ddx

[

1

2
(~∇φ)2 +

1

2
φ2(1 − lnφ2)

]

(4.5)
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Given that E is fixed throughout the motion, to find the turning points in any given

region, II, III, or IV, we simply plug the relevant field configuration into equation (4.5)

and solve for real or Euclidean time as appropriate. In region II, for example, this gives

τ1 = τ1(E), τ2 = τ2(E), and so σII = σII(E).

Given the symmetry of the potential, VE, we immediately see that σII = σIV. There-

fore, by defining Θ = exp(σII) one has that the transmission probability is given by

TI→V = 4
[

(

Θ2 + Θ−2
)2

cos2W + 4 sin2W
]−1

(4.6)

It is easy to see that the transmission rate is enhanced as W (E) → (n + 1
2
)π, for any

integer, n. The width of this resonance can be approximated by [2]

Γ ≃
(

πΘ2dW

dE

)−1

= 2
(

πΘ2∆t
)−1

. (4.7)

where we have used the fact from classical mechanics that the period of oscillation is given

by2 ∆t = 2dW
dE .

To complete the analysis of this section we present the results of this model, taking

d = 3 spatial dimensions, and using m = c = 1. Figure 7 shows how the quantities W , σII

and cos(W ) depend on energy, from which we may calculate the transmission probability.

In figure 8 we give a section of the curve showing the transmission probability, noting

the presence of resonance peaks which become increasingly narrow as energy is reduced.

As we go to energies lower than those shown in figure 8, this behaviour continues, with

increasingly narrow resonant peaks appearing at regular intervals. From equation (4.7),

we might have expected the width of the resonance to decrease with energy i.e., as σII

increases. Intuitively this also makes sense: σII essentially measures the height of the

potential barrier, and the higher the barrier the more tunnelling is suppressed, except in

the very core of the resonance.

Figure 8 actually shows the transmission rate in the region immediately below a

maxmium energy, Emax = md+2c2πd/2ed/2 (∼ 56 for d = 3, m = c = 1), beyond which our

tunnelling description breaks down. This is because at high enough energies the barrier

disappears altogether and one can pass from one vacuum to the other classically. At lower

energies, of course, one must tunnel between vacua quantum mechanically, with transmis-

sion probability given by (4.6). Although this process is usually suppressed, the resonant

peaks in figure 8 demonstrate that an inhomogeneous initial state can decay via resonant

tunnelling, passing from one vacuum to another with almost unit probability. Note that for

E = 0, there is no resonance, which is consistent with our original no-go theorem [6]. We

conclude, therefore, that initial inhomogeneity and non-zero energy are absolutely crucial

for resonant tunnelling to occur in quantum field theory.

5. Thin wall limit

How typical are the results of the previous section? This is not so easy to answer in com-

plete generality, although we can demonstrate resonant tunnelling in another, completely

2The factor of two is because we define W over a half period.
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Figure 7: A plot of the quantities used to calculate the transmission probability (4.6).
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Figure 8: A graph showing the dependence of transmission probability on energy for a range of

energies, just below the maximum energy, Emax ∼ 56. Notice the presence of the resonant peaks at

regular intervals, the width of which decreases with energy.

unrelated, but tractable scenario. To this end we will restrict attention to theories for which

there is a sensible “thin wall limit”, as is often assumed in tunnelling calculations [7]. Al-

though the previous calculation made use of a model containing oscillons with a single

length scale, namely its size, in principle it is possible to have oscillons whose radius is

much larger than the width of their “skin”, by which we mean that the oscillon does not

simply drop off as a gaussian profile with one associated length scale, but rather it has

an almost constant amplitude out to some radius, before dropping rapidly towards zero

amplitude over a short distance (the skin) compared to the radius. In this instance, the
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thin wall approximation is a good one, and the dynamics of the oscillon is governed by a

membrane-type action

Sm = −σ
∫

d3ξ
√

detG+ ǫ

∫

dV dt. (5.1)

where G is the induced metric on the world volume of the membrane, σ the tension of the

bubble wall, V the volume of the bubble and ǫ the difference in potential energy density

between the inside and outside of the bubble. Even without our general motivation, we

could just take (5.1) as our starting point and consider the dynamics of membranes in their

own right. Imposing spherical symmetry, the action (5.1) of a single bubble wall leads to

the following Lagrangian for the bubble radius,

Ltw = −Ωd−1σR
2
√

1 − Ṙ2 + Ωdǫ|R|3. (5.2)

We can extract the potential [6],

Vtw = Ωd−1σR
2 − Ωdǫ|R|3 (5.3)

which is qualitatively the same as VL(T ) of the scalar field theory in the sense that it

resembles the bottom of a wine bottle, turned upside down. Indeed, R is essentially playing

the same role as T did in the previous section, with its absolute amplitude representing the

bubble radius, and its sign representing the interior vacuum (more on this later). These

similarities mean that we can simply import qualitative results from the previous section.

In the thin wall analysis of our previous paper [6], we pointed out that for resonance

to occur, we need an oscillatory solution to act as the intermediate bound state. In the

case of tunnelling from the false vacuum (R = 0) we see that there are no such solutions,

as expected from our no-go theorem [6]. However, if we allow for inhomogeneous initial

conditions we may consider a range of energies for which Vtw supports oscillatory solutions.

Indeed, one can describe a process whereby a contracting bubble of one vacuum decays,

via resonant tunnelling, to an expanding bubble of a completely different vacuum. The

oscillatory intermediate state acts as a springboard for the tunnelling amplitude.

A typical tunnelling path is shown in figure 9. The lefthand plot shows the bubble

radius as a function of the evolution parameter. The initial state corresponds to a bubble

whose radius decreases to a minimum value (region I) before tunnelling along a MPEP

(region II) to the oscillatory bound state (region III). At first glance, our plot in region

III would not seem to make sense, since the bubble radius clearly appears to go negative.

However, we should understand the transition to negative R as a change of vacuum inside

the bubble. In other words, the bound state corresponds to a bubble of one vacuum shrink-

ing to zero size, followed by an expanding bubble of different vacuum. The new bubble

expands to a maximum radius before contracting again and the process gets repeated. This

behaviour is perhaps shown more intuitively in the righthand plot, where the bubble radius

is always positive and colours (red and white) are used to indicate the interior vacuum. For

a given path, the oscillations in region III can go on any number of times before we tunnel

out along another MPEP (region IV), to the final state (region V). As R has changed

– 14 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
5

Figure 9: A typical configuration, or “path” that contributes to the path integral for resonant

tunnelling in the thin wall limit. The lefthand plot shows the evolution of the bubble radius, R(λ).

The evolution parameter, λ, is given by real time, t, in the classically allowed regions, I, III, and V,

and by Euclidean time, τ , in the classically forbidden regions II and IV. The transition to negative R

should be understood as the vacuum changing inside the bubble. This is shown more intuitively in

the righthand plot, which shows the evolution of a circular bubble wall, of positive radius. Colours

(red and white) are used to indicate the interior vacuum in the classically allowed regions, whereas

the classically forbidden regions are coloured in black.

sign, the final state corresponds to an eternally expanding bubble of different vacuum to

the initial state. This is demonstrated by an overall transition from white to red in the

righthand plot.

As mentioned earlier, the governing dynamics is qualitatively the same as in the previ-

ous section. We therefore extend the results to apply to any quantum field theory, whenever

the thin wall limit approximation is valid. Of course, we might question the validity of

this approximation for the intermediate bound state, as R → 0. Nevertheless, we have

certainly seen in this section and the last that resonant decay of inhomogeneous states is

allowed in quantum field theory.

6. Conclusions

In this paper we have reconsidered the issue of resonant tunnelling in scalar quantum

field theory, making use of our original no-go theorem [6] in order to guide us towards an

explicit realization of this phenomena. The key development has been to justifiably relax

one of the five conditions that led to our theorem, by allowing for solutions with non-zero

energy relative to the false vacuum. This permits the existence of finite energy oscillons

corresponding to the intermediate bound state, acting as the springboard for the tunnelling

amplitude between the initial and final states. Of course, by energy conservation, the initial

state will also have non-zero energy, and since it asymptotes to the false vacuum, it must

also be inhomogeneous. We found that whilst the homogeneous false vacuum cannot decay

via resonant tunnelling [6], the same is not necessarily true for an inhomogeneous initial

state that is merely asymptotically false vacuum.

Although not usually considered in the literature [7], tunnelling from inhomogeneous

states is certainly of interest cosmologically. Indeed, the Universe is not expected to be
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particularly homogeneous or isotropic at early times, before some mechanism flushed away

all inhomogeneity and anisotropy on large scales (see, for example [23]). That is not to

say that it is easy to find an inhomogeneous initial state that will decay by resonant

tunnelling. On the contrary, there are a number of obstacles to be overcome if this is to

be realized in practise. In this paper we have considered initial states that correspond

to contracting spherical bubbles, with some minimum radius. This is hardly a “natural”

field configuration, although we note that in principle the initial state can be any non-zero

energy solution that asymptotes to the false vacuum and is everywhere stationary at some

point in the future. In addition to this rather special initial state, our model must admit

localized periodic solutions that act as the intermediate bound state. We must also be able

to join this solution at either end to the initial and final states via Euclidean evolution,

connnecting one everywhere-stationary profile to another. Once all these conditions are

satisfied, we must fine tune the energy so that the oscillon action satisfies (2.6). Then

the initial state will decay to the final state with almost unit probability. The final state

corresponds to an expanding bubble, whose interior vacuum differs from the interior of the

initial state.

The conditions for resonance have all been derived within the semi-classical approxima-

tion. With the additional assumption of spherical symmetry, we have shown that resonant

decay of inhomogeneous states is allowed in quantum field theory. It is natural to ask what

happens if we increase the number of degrees of freedom by allowing for non-spherical field

configurations. For a spherically symmetric initial state, we do not expect non-spherically

symmetric states to play much of a role, even if we were able to match a significant number

of them on to the initial state via Euclidean evolution. This is because non-spherically sym-

metric solutions are typically suppressed relative to the spherically symmetric ones [24].

Even though some non-spherically symmetric oscillons have been found, they rapidly decay

into a spherical profile [25].

We must also consider oscillons with a finite lifetime, and the impact they might have

on our results. Of course, these are not strictly periodic but can live for many oscillations,

and will contribute to tunnelling paths in the path integral. Given that the Q-factor of a

resonant cavity increases with increasing “dwell time” (the length of time that an electron

spends in the central well) we may expect that the finite lifetime of oscillons would tend to

broaden the resonance. Another effect which proves deleterious to resonance is non-zero

temperature, again with the consequence of broadening the resonances.

Unfortunately, gravity will also have a negative impact on resonant tunnelling, mainly

due to the effect of Hubble damping. Hubble damping eliminates the existence of periodic

oscillons, and, given the reasons outlined in the previous paragraph, this can only lead to

further broadening of the resonances. One is also faced with the possibilty of gravitational

collapse, which could potentially eliminate the turning point for the collapsing spherical

bubble, making tunnelling impossible.

Despite our rather gloomy discussion, we believe our results could have a positive

impact on Tye’s approach to tunnelling within the string landscape [4]. Recall that Tye

has argued that should resonant (or “fast”) tunnelling occur within the landscape, then

we would naturally find ourselves in a low energy vacuum, having repeatedly tunnelled
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through the landscape along resonant paths. Crucially, resonant tunnelling has now been

explicitly shown to occur in quantum field theory, albeit only for spherically symmetric,

inhomogeneous states, lending some credence to Tye’s arguments.

It is fun to speculate as to how the tunnelling process described in this paper could

be extended to apply to the landscape. After one resonant decay, the state corresponds to

an expanding bubble, enveloping the false vacuum. Globally, this solution is never again

stationary and is immune to further decay. Even if we redefine the false vacuum and

restrict attention to the bubble’s interior, we fall victim to our original no-go theorem [6]

and future resonant tunnelling is impossible. This would seem to be make the cascade of

resonant decays desired within the landscape impossible. However, what if the final state

after the first decay were not an eternally expanding bubble, but another oscillon, or a

subcritical bubble with some maximum size? Such a final state could potentially decay via

resonant tunnelling to yet another state. This may seem rather contrived, but this is not a

major concern for the landscape, given the huge range of possible configurations available.

We could ultimately develop a picture of cascading oscillons within the landscape, with

each subsequent oscillon probing yet more vacua!
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